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1
METHOD FOR ESTIMATING FREE SPACE
USING A CAMERA SYSTEM

FIELD OF THE INVENTION

This invention relates generally to free space estimation,
and more particularly to estimating the free space from
images acquired by a camera system.

BACKGROUND OF THE INVENTION

In the field of autonomous navigation and computer vision,
free space is defined as an area in front of a moving object,
e.g., in front of or behind a vehicle, boat, or robot, where the
object can manoeuvre without colliding with other objects.
Another name for the free space is drivable space.

With the use of accurate maps and localization systems,
autonomous navigation provides incremental navigation
directions to the moving object to travel from point A to point
B without colliding on any obstacles along its path. To do this,
it is necessary to know critical information that is necessary to
avoid obstacles, and a most cost-effective approach to obtain
the critical information.

The most critical information for the autonomous naviga-
tion is the free space. It is well-known that the free space can
be estimated using stereo cameras. For example, it is possible
to estimate a ground plane and obstacles above the ground
plane using a stereo camera system. The concept of occu-
pancy grids is closely related to free space estimation. An
occupancy grid refers to a two-dimensional (2D) grid where
every cell models the occupancy evidence of the environ-
ment, and is typically estimated using a three-dimensional
(3D) sensor that measures distances on a planar slice of the
environment, such as a scanning LIDAR and an array of
ultrasound sensors.

A stixel world representation has been used for the free
space estimation problem. The stixel world refers to a sim-
plified model of the world using a ground plane and a set of
vertical sticks on the ground representing the obstacles. The
model can compactly represent an image using two curves,
where a first curve runs on the ground plane enclosing a
largest free space in front of the camera and a second curve
indicates the height (vertical coordinates) of all the vertical
obstacles at a boundary of the free space. The stixel world can
be determined using depth maps obtained from stereco cam-
eras. There are several algorithms that determine the depth
maps from stereo images, such as semi-global stereo match-
ing method (SUM). Stixels can be also determined without
explicitly estimating the depth maps from stereo images
using dynamic programming (DP). Those techniques either
implicitly or explicitly determine depth using a stereoscopic
or 3D sensor.

To reduce the system complexity and cost, it is desired to
determine the free space from a sequence of images, i.c., a
video, acquired by a monocular camera mounted on the mov-
ing object. There are several challenges in solving this prob-
lem using monocular videos instead of stereo videos. In con-
trast to other segmentation problems, it is not possible to rely
completely on color or edges. For example, in videos of roads,
strong gradients from cross-walks and lane markings are
often present. In the case of water, there is often reflection
from nearby boats, buildings, or sky. Features based on
homography, that relies on planar roads, may not be accurate
due to non-flat roads. Furthermore, the moving objects have
additional challenges in monocular free space estimation.

It is known how to perform geometric layout estimation
from single images. It is possible to classify the pixels in a
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2
given image into ground, buildings, and sky. This classifica-
tion has been used to obtain popup 3D models of buildings. A
scene can be modeled using two horizontal curves that parti-
tion an image into top, middle, and bottom regions. It is
shown that this problem of segmenting an image into regions
can be done using a globally optimum method.

The general idea of using dynamic programming for col-
umn-wise matching has been used for estimating the 3D
models of buildings, and generalized to work with several
layers of height-maps for modeling urban scenes.

Monocular videos have been used by simultaneous local-
ization and mapping (SLAM) methods. Most of those meth-
ods provide a sparse point cloud and do not explicitly estimate
the free space, which is the most critical information for
autonomous navigation.

To the best of our knowledge, we are not aware of any free
space estimation method for boats in the water using prior art
computer vision techniques. The segmentation of water in an
image of a scene is particularly challenging due to its specular
properties, such as the reflection of nearby obstacles or sky on
the water. Features such as color and edges perform poorly
under such cases.

SUMMARY OF THE INVENTION

The embodiments of the invention provide a method for
estimating free space near moving objects from a video, i.e.,
a sequence of images, acquired of a scene by a monocular
camera. The method can be used for autonomous navigation
of on-road vehicles and in-water boats. The method uses
dynamic programming (DP) to segment the images acquired
in front of or behind the moving objects into free space and
obstacles.

In contrast to prior approaches using sterecoscopic or 3D
sensors, we make it possible to solve this problem using a
video acquired by a monocular camera. Our method relies on
several image and geometric features, such as the appearance
of water and road, edge information, homographies between
consecutive images, and smoothness. The features are used to
determine a set of potentials for an objective or energy func-
tion.

We formulate the free space estimation problem as an
optimization problem in a Markov random field (MRF). We
define the MRF as a one-dimensional (1D) graph, where each
node corresponds to a column of pixels in the image. As our
graph forms a 1D chain, exact inference can be done using DR
Parameters of an energy function of the MRF can be manually
set, or automatically determined from a sequence of training
images using a structured support vector machine (SVM).

Our method estimates the free space reliably, while only
employing monocular cues. Our method can also incorporate
other monocular cues, such as optical flow determined from
the monocular video, and depth maps determined by estimat-
ing the motion of the camera and using multiple frames in the
monocular video as multiple images. Although our main
focus is on monocular camera systems, if stereo or multiple
cameras are available, then we can also incorporate stereo or
multi-camera cues, such as depth maps determined from the
multiple cameras.

We are interested in scenes with challenging traffic condi-
tions rather than buildings, and also maritime scenes. Further-
more, we obtain the free space segmentation that varies
smoothly across a video sequence.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are images of a scene where free spaces
are determined according to embodiments of the invention;
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FIG. 2A is a flow diagram of a method for estimating free
spaces according to embodiments of the invention;

FIG. 2B is a flow diagram of a method for determining
parameters of an energy function according, to embodiments
of the invention; and

FIG. 3 is a one-dimensional graph used for determining the
free space and a curve corresponding to the free space accord-
ing to embodiments of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

As shown in FIG. 2A, the embodiments of our invention
provide a method for estimating free space 101 near a moving
object from a sequence of images 201 acquired of a scene by
a camera system arranged on the moving object. Example
images acquired from an on-road vehicle and an in-water boat
with their corresponding free spaces are shown in FIGS. 1A
and 1B, respectively. The camera system can be a monocular
video system, or a stereo or multi-camera system.

The free space as determined by the embodiments of the
invention can be used in a number of applications, such as
autonomous navigation of vehicles moving from one location
to another, manouvering a boat during berthing or mooring,
parking a vehicle, and moving a robot such as an automated
vacuum cleaner.

First, we construct 210 a 1D graph 301, see FIG. 3, where
each node corresponds to a column of pixels in the image, and
each edge connects neighboring columns. Then, we deter-
mine 220 features from the image based on edges, appear-
ance, homography, geometric context, and smoothness,
which we use to construct 230 an energy function, based on
the graph, for the free space estimation. The features can also
be based on the optical flow in the images, or a depth map
determined, from a monocular video sequences. Then, weuse
240 dynamic programming for estimating the free space 101
by maximizing the energy function.

The energy function is defined as a sum of potential func-
tions determined by the features with their corresponding
weight parameters. The weight parameters can be manually
set, or automatically determined from a sequence of training
images having ground truth annotations 250 by using a learn-
ing algorithm, as shown in FIG. 2B. For learning the param-
eters, we first use the sequence of training images 250 to
construct 210 the 1D graph, determine 220 the features, and
construct 230 the energy function. We then estimate 260 the
weight parameters 270 using a structured SVM. The steps of
the method can be performed in a processor 200 connected to
memory and input/output interfaces by buses as known in the
art.

Monocular Free Space Estimation

Specifically, as shown in FIG. 1, we are interested in esti-
mating the free space given monocular imagery in the context
of both marine and urban navigation. Towards this goal, we
express the problem as the one of inference in a Markov
random field (MRF), which estimates for each image column
y, of pixels, the vertical coordinates of an obstacle. The MRF
is represented as a 1D graph 301, and the solution provides a
1D curve 310 in the image, as shown in FIG. 3.

The 1D graph 301 includes a set of nodes denoted by y,
corresponding to the w columns of the image. Each node
represents a discrete variable whose value comes from a set of
labels given by the h rows in the image. The labels are ordered
such that the bottom pixel has a label 1, and the top pixel has
itlabel h. By solving the energy maximization problem on the
graph and labeling these nodes, we obtain the 1D curve 310.
An area under the curve defines the free space 101 near the
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vehicle or boat. The 1D curve can be used for estimating the
nearby free space in front of, or perhaps behind, vehicles,
robots, and boats.

Below, we provide details on the energy function, poten-
tials, inference, and parameter learning.

Energy Function

Let I, denote the image at time t in the video. The dimen-
sions of the image are wxh, where w and h are the width and
height respectively. We model the problem so that we have w
discrete variables y,,i€{1, . .., w} and each variable can take
a value from h discrete labels, y,&{1, .. ., h}.

Letus consider the 1D graph 301. G={V,E}, where vertices
are V={1, . . . w}, and the edges are (i,i+1)EEi€{l, . . .,
w-1}. We can further restrict the states of'y, to never be above
the horizon 320, which is always above the ground plane. We
can determine an estimate of the horizon manually based on
the configuration of the camera system (e.g., position and
field of view of the camera), or automatically using the set of
training images, and use the estimate to restrict labels in an
inference procedure. Hence, the estimate of the horizon can
be used to restrict: vertical coordinates of obstacles in the
scene.

To determine the curve 310 for image I, we also use fea-
tures from image I,_,. Our energy function E is

E(yxlplt—l):WTq)(y:IpIt—l)a (6]

where T is a transpose operator, y=(y; . . ., ¥,,), and potentials
¢ of the energy function decompose into unary and pairwise
terms:

EQ o dm) = 3 D waa0) Y wobpyis ) @

wel i G, )eE

unary pairwise

The unary potentials are ¢, (y,), and the pairwise potentials
are §,,(y,,y,)- The weight parameters of the unary and pairwise
terms are w, and w, , respectively. The weight parameters can
be formed as w={w,,w,}, which are set manually or learned
from the set of training images using structure prediction
techniques. Here,

U={appearance,edge,homography,geometric_con-
text},

3

refers to the set of unary potentials, which are now described
in greater detail.

Appearance

We use two Gaussian mixture models (GMMs), each with
five components, to model the appearance model of road or
water, and background. Herein, the terms road and water can
be used interchangeably. The GMMs are used to determine
the probability for each pixel to be road or water, or back-
ground. The GMMs that are specific to target scenes can be
determined from the training images with the ground truth
annotations 250 using an expectation-maximization (EM)
method. The GMMs can be also determined, for more general
scenes by using images including road/water and background
with ground truth annotations.

Our goal is to estimate the free space so that the curve lies
on the boundary between road and non-road (or water and
obstacles). Towards this goal, we derive a potential that con-
siders the entropy of the distribution in patches around the
labels as follows:
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h 4
Bappearance i = k) = H(i, k)Y H(i, ),
=

where the entropy H(i, j) is determined in terms of the distri-
bution of road/non-road (or water/non-water) pixels in a
patch centered at each pixel location (i, j). The entropy H(, j)
should be high near the boundary between road/non-road
pixels. Because the curve passes through the boundary
between the closest set of obstacles and the road, we use a
cumulative sum that attains a maximum for the curve that
passes through the bottom of the image. The function also
ensures that the curve passes through a pixel that has a non-
zero H(i, k) value. This estimate can be quite noisy.

To smooth the curve, we determine a location prior prob-
ability, which expresses, for each pixel, the probability of
being road, which is estimated by determining empirical
counts of the road pixels below the curve from the training
data. We then determine the pixels which in all images are
road, and force their entropy to be zero. This is a conservative
estimate, but nonetheless it smooths the results considerably,

Edge

The ground truth curve is at the boundary between the
ground plane and the obstacles. We derive an edge potential,
which encodes the fact that we prefer the curve to be aligned
with contours. There may be many contours in the image,
however, the curve prefers edges that are located near the
bottom of the image, which would correspond to closest
edges in the 3D space of the scene. To take this into account,
we define the following potential, which accumulates edge
evidence as follows:

h ®
Pedge (i =H) = (i, 1)) (i, ),

J=k

with e(i, j)=1 when there is an edge at the (i, j) pixel, and zero
otherwise.

Geometric Context

Given a single image, it is possible to classify the pixels in
the image to ground, buildings (horizontally oriented), and
sky. Let G(i, j) refer to a Boolean label corresponding to
whether a pixel is ground, or not, based on this classification.
Because we are interested in getting the curve that encloses
the largest free space, we use the following potential:

h ©

>, Gl

IS 01
baclyi == 7> Gl )= =g
=1 J=k+1

Homography

It is important to obtain a free space that is smooth across
the image sequence. One possibility is to estimate the curves
in two consecutive images jointly by considering pairwise
connections between nodes in one image to the nodes in a
previous image. This would result in constraining the labeling
of a pixel p(i, j) in image I, with neighboring pixels of p(1', ')
in image I,_,, leading to a 2D graph that is neither a 1D chain
nor a tree-structured graph. As a result, the inference would
become NP-hard.

Therefore, we use homography to impose smoothness
across images and still maintain the 1D graph during infer-
ence. Instead of using smoothness across nearby pixels, we

10

15

35

40

45

50

55

60

65

6

determine a homography matrix based on the ground plane.
This gives us one-to-one mapping from a pixel on the ground
in one image to its corresponding pixel on the ground in the
previous image. This also provides a mapping between the
free space curve in one image to another. Let H(t,t-1) be the
homography matrix that maps a pixel location at (i, j) in image
1, to a pixel at location (i, j') in image I, |, as given by:

7

i i
7 =H(l‘,t—1)[j].
1 1

In this way, the potential can be written as

M

Dnomograpny Vi) =Puyi =7 ®)

where uEU\homography, and ¢,,(y;~j'") is the unary potential
in the previous image [, ;.

The different unary potentials in image I, ; map to homog-
raphy potentials in I,. We determine the homographies using
scale-invariant feature transform (SIFT) in a RANdom
SAmple Consensus (RANSAC) framework. In the case of
water, we detect correspondences only near the previous free
space curve because there are too many spurious correspon-
dences on the water. Note that the edges from reflections of
objects on water will not match using the homography matrix,
and thus we can filter the reflections from our curve. In the
case of road scenes, we use the SIFT matches below the
previous free space curve to determine the homography
matrix, as reflections are not a problem.

Smoothness

We employ a truncated quadratic penalty to encourage the
curve to be smooth. Note that this curve is non-smooth only
when there are obstacles, which happens only at a few col-
umns. Thus

_{eXP(—w(y;—yj)z) it |yi-yl =T (&)

p = .
Ag otherwise

where o, A, and T are constants.

Inference

The MAP estimate, or maximum energy configuration, can
be determined by solving

max WO, ). (10)

Our graph forms a 1D chain, and thus exact inference can
be done using dynamic programing, with a complexity of
O(wn?), where w is the width of the image and n is the number
of labels for each variable after imposing the horizon con-
straint.

The weight parameters w can be manually set, or automati-
cally determined using the training images 250 as described
below.

Parameter Learning

We use the structured SVM to learn the weight parameters
using the training images:

1 (11
. 2 '
min 5 1w +C E‘- &
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-continued
st &zw (@) - 40N+ A, YO, V.
£&=0,¥i=1,..,N.

Here, y is the ground-truth curve for the i-th instance,
A(y,y®™) the loss function, and N the total number of training
examples. The loss function is a truncated version of the
relative gap as shown below:

ly=yil if |y-yl| =T (12)

Ay, y) = . s
v ”{ T i |y-wl>T

where T is a constant. We use a cutting plane procedure,
where at each iteration we solve the following loss augmented
inference to determine the most violated constraint:

Vi, max wT(@,0)- 0PN +AG, D). 13)

As the loss decomposes into unary potentials, the loss-
augmented inference can be solved exactly via dynamic pro-
gramming.

Our method can also incorporate other features by defining
a unary potential for each additional feature, and adding the
potential to the set of unary potentials in Eq. (3). The weight
parameters for the other features can be manually set or
automatically determined by the learning method formulated
in Eq. (11). Other features include optical flow and depth
maps determined from the monocular video. If stereo or
multiple cameras are available, features obtained from stereo
or multi-camera cues can also be incorporated, such as depth
maps determined from the multiple cameras. Note that any
number and combination of features can be used in our
method by changing the set of unary potentials in Eq. (3)
accordingly.

Although the invention has been described by way of
examples of preferred embodiments, it is to be understood
that various other adaptations and modifications can be made
within the spirit and scope of the invention. Therefore, it is the
object of the appended claims to cover all such variations and
modifications as come within the true spirit and scope of the
invention.

We claim:

1. A method for estimating free space near a moving object,
comprising:

acquiring a sequence of images of a scene by a monocular

camera system arranged on the moving object, and for

each image in the sequence of images:

constructing a Markov random field as a one-dimen-
sional graph, wherein each node in the graph corre-
sponds to a discrete variable for a column of pixels in
the image;

determining features in the image;

constructing an energy function on the one-dimensional
graph based on the determined features; and

using dynamic programming to maximize the energy
function to obtain a curve, wherein an area under the
curve defines the free space near the object, wherein
the free space is used for autonomous navigation of
the moving object moving from one location to
another, and wherein the steps are performed in a
processor connected to the monocular camera system,

wherein the energy function comprises a sum of unary
and pairwise potential functions, and wherein each
potential function is determined using a correspond-
ing feature among the determined features and a cor-
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8

responding weight parameter learned from a
sequence of training images.

2. The method of claim 1, wherein the moving object is a
vehicle and the scene includes a road.

3. The method of claim 1, wherein the moving object is a
boat and the scene includes water.

4. The method of claim 1, further comprising:

estimating, for each column of pixels in the image, vertical
coordinates of an obstacle.

5. The method of claim 1, wherein the free space is in front

of or behind the moving object.

6. The method of claim 4, further comprising:

using an estimate of a horizon to restrict the vertical coor-
dinates of the obstacle.

7. The method of claim 6, wherein the estimate of the
horizon is determined based on a configuration of the camera
system.

8. The method of claim 6, wherein the estimate of the
horizon is determined using a set of training images.

9. The method of claim 1, wherein the weight parameter is
set manually.

10. The method of claim 1, wherein the weight parameter is
determined automatically from a set of training images using
a structured support vector machine.

11. The method of claim 1, wherein the features are
selected from a group consisting of edges, appearance,
homography, geometric context, smoothness, optical flow, a
depth map and combinations thereof.

12. The method of claim 11, wherein the appearance is
modeled by Gaussian mixture models.

13. The method of claim 1, further comprising:

determining a location prior probability for each pixel in
the image to smooth the curve.

14. The method of claim 11, wherein the homography
imposes smoothness across the images, wherien the homog-
raphy is based on a ground plane in the image.

15. The method of claim 1, wherein a truncated quadratic
penalty is used to smooth the curve.

16. The method of claim 1, wherein the moving objectis a
vehicle, and wherein the free space is used for autonomous
navigation of the vehicle moving from one location to
another.

17. The method of claim 1, wherein the moving objectis a
boat, and wherein the free space is used for manouvering the
boat during berthing or mooring .

18. The method of claim 1, wherein the moving objectis a
vehicle, and wherein the free space is used for parking assis-
tance for the vehicle.

19. The method of claim 1, wherein the moving objectis a
an indoor mobile robot, and wherein the free space is used by
the indoor mobile robot for moving inside a building.

20. The method of claim 1, wherein the moving objectis a
vacuum cleaning robot, and wherein the free space is used by
the vacuum cleaning robot.

21. A system for estimating free space near a moving object
comprising:

a monocular camera system arranged on the moving
objects for acquiring a sequence of images of a scene;
and

a processor connected to the monocular camera system
being operable to:
construct a Markov random field as a one-dimensional

graph, wherein each node in the graph corresponds to
adiscrete variable for a column of pixels in the image,
determine features in the image,
construct an energy function on the one-dimensional
graph based on the determined features; and
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use dynamic programming to maximize the energy
function to obtain a curve, wherein an area under the
curve defines the free space near the object, wherein
the free space is used for autonomous navigation of
the moving object moving from one location to 5
another,

wherein the energy function comprises a sum of unary and

pairwise potential functions, and wherein each potential

function is determined using a corresponding feature

among the determined features and a corresponding 10

weight parameter learned from a sequence of training

images.



